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ABSTRACT 

 
Retention indices of 38 benzene derivatives, separated by gas chromatography were correlated with 2 

connectivity indices, using PM3 semi-empirical calculation method and hybrid genetic algorithms/ multiple 
linear regression approach. For the sake of external validation, the available set of chemicals was separated 
using Kennard and Stone algorithm into training set of 28 compounds and an external set of 10 compounds. 
The proposed hybrid model was validated using different criterions, and its predictive capability meets the 
conditions defined by Golbraikh et al. In comparison to the previously published model, our model exhibits a 
large enhancement and its mechanistic interpretation was attempted to connect the selected variables to the 
retention phenomenon.  
Keywords: Benzene derivatives- Kováts index- QSRR- Internal and external predictivity validation-Chemical 
applicability domain. 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Corresponding author 



     ISSN: 0975-8585 

May – June  2017  RJPBCS  8(3)          Page No. 822 

INTRODUCTION 
 
The mono-aromatic hydrocarbons, which are often present in the urban environments, constitute an 

important source of pollution and health hazard[1]. 
 

Hence, the development of reliable structural identification and quantification of these substances is 
imperative. Gas chromatography coupled with the mass spectrometry or infrared analysis by Fourier transform 
is largely used to this aim. Nevertheless, the measurement of their retention indices constitutes, even 
nowadays, a simple means of effective, sensitive and affordable identification. 
 

Advantageously, any parameter of retention can be derived a priori from the molecular structure of 
the considered compound. The prediction of the retention indices of a set of 38 benzene derivatives separated 
by isothermal gas chromatography was obtained by Jalali-Heravi and Garkani-Nejad [2] who adopted a QSRR 
approach [3](Quantitative Structure-Retention/Relationship). Based on a training set of 32 randomly selected 
compounds, linear models were developed following a stepwise involving successive additions of 58 variables 
(topological, geometrical and electronic) along with previously characterized physical properties. Although 
widely used, the disadvantage of this approach is that it cannot account for combined effects since each 
variable is considered separately. 

 
Genetic algorithms [4,5], based on the stochastic search, constitute an alternative method of choice 

for the selection of  variables subsets (VSS: Variable Subset Selection). 
 
The optimization of the molecules geometry, necessary to the calculation of certain descriptors was 

conducted by applying the MNDO (Modified Neglect of Diatomic Overlap) semi-empirical method [6] while 
MNDO is known to be ineffective when calculating the molecular structures and the heats of formation of the 
molecules containing fluorine [7]. 

 
The model includes four descriptors (XV0: valence connectivity index of order zero; NOCH3: number of 

methyl groups in the molecule; VOL: Van der Waals volume of the molecule; DIMO: Dipole moment of the 
molecule) [2] is validated using the following set of parameters: the coefficient of determination R2, Fisher 
parameter F and the standard deviation S,while the application domain of this model is not defined. 

 
In addition, for models including more than two descriptors, low coefficients of correlation cannot 

positively ensure the complete independence of the descriptors. This aspect was not assessed by Jalali-Heravi 
and Garkani-Nejad [2]. Finally, the predictive capability of the proposed model was tested by calculating the 
retention indices of the six compounds not retained for its construction.  

 
In this work, we proposed a statistical linear model using the same database by calculating the 

molecular descriptors with the software Dragon [8]. This statistical linear model is justified using different 
criteria and its prediction capability is assessed following Golbraikh et al.’s conditions [9,10]. 
 

Finally, the applicability domain (AD)is discussed using the Williams plot [11,12] that represents the 

standardized residual of predictions versus the leverage values
( )iih

. 
 

The semi-empirical method PM3 (Parametric Method 3) [13] was useful for optimization of the 
geometry of the molecules. It consists in re-parameterization of AM1 method (Austin Model1) [14] that is itself 
an improved version of the MNDO method.  

 
It is important to define rationally the training set during the construction of the model and, for its 

assessment an external test set comprising 15 to 40% of the available data. The available set of chemicals was 
preliminary separated using Kennard and Stone algorithm [15].The hybrid approach Genetic Algorithm 
Multiple Linear Regression(GA-MLR) was adopted in our work. 
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MATERIALS AND METHODS 
 

Database: 
 

The Kováts indices of the 38 benzene derivatives (table1) were extracted from reference [2]that also 
provides a detailed description of the conditions of the chromatographic separation. 

 
The extreme values are 664.1 and 1287.7 index units (iu) with an average of 965.2 iu. 
 

 Table1: Retention indices (experimental and calculated) and values of the used descriptors 
 

N° Compounds CAS Number RIExperimental RICalculated 0X Av  1 2X sol  

01 Benzene 71-43-2 681.3 689.94 0.577 9.0000 

02 Fluorobenzene 462-06-6 664.1 678.31 0.538 9.0000 

03 Chlorobenzene 108-90-7 877.9 863.89 0.646 13.5645 

04 Bromobenzene 108-86-1 979.6 973.14 0.764 15.7688 

05 Toluene 108-88-3 788.2 789.50 0.627 11.5192 

06 Anisole 100-66-3 923.6 913.61 0.599 15.4606 

07 p-Chloroanisole 623-12-1 1131.7 1124.67 0.650 21.2890 

08 p-Xylene 106-42-3 889.2 895.62 0.664 14.3489 

09 p-Fluorotoluene 352-32-9 777.7 777.28 0.586 11.5192 

10 p-Bromotoluene 106-38-7 
 

1096.3 1089.48 0.784 19.0532 

11 p-Bromofluorobenzene 460-00-4 940.9 955.86 0.706 15.7688 

12 p-Chlorobromobenzene 106-39-8 1174.4 1182.14 0.801 21.6597 

13 m-Chloroanisole 2845-89-8 1126.0 1124.67 0.650 21.2890 

14 m-Methylanisole 100-84-5 1029.6 1033.68 0.635 18.7143 

15 m-Xylene 108-38-3 892.0 895.62 0.664 14.3489 

16 m-
Chlorobromobenzene 

108-37-2 1179.0 1182.14 0.801 21.6597 

17 m-Bromotoluene 591-17-3 1100.0 1089.48 0.784 19.0532 

18 m-Fluorotoluene 352-70-5 778.0 777.28 0.586 11.5192 

19 m-Dibromobenzene 108-36-1 1287.7 1306.01 0.905 24.4234 

20 o-Methylanisole 578-58-5 1013.5 1038.63 0.635 18.8616 

21 o-Chloroanisole 766-51-8 
 

1135.6 1129.96 0.650 21.4462 

22 o-Bromofluorobenzene 1072-85-1 959.6 955.86 0.706 15.7688 

23 o-Xylene 95-47-6 916.2 899.96 0.664 14.4780 

24 o-Bromochlorobenzene 694-80-4 
 

1197.6 1187.46 0.801 21.8182 

25 p-Methylanisole 104-93-8 1029.5 1033.68 0.635 18.7143 

26 o-Bromotoluene 95-46-5 1095.7 1094.47 0.784 19.2019 

27 m-Fluoroanisole 456-49-5 
 

908.5 903.77 0.566 15.4606 

28 p-Chlorotoluene 106-43-4 989.2 976.50 0.680 16.6138 

29 p-Fluoroanisole 459-60-9 910.6 903.77 0.566 15.4606 

30 m-Chlorotoluene 108-41-8 990.9 976.50 0.680 16.6138 

31 m-Chlorofluorobenzene 625-98-9 835.4 851.08 0.603 13.5645 

32 m-Dichlorobenzene 541-73-1 
 

1060.5 1063.55 0.697 19.0532 

33 o-Fluorotoluene 95-52-3 
 

777.4 777.28 0.586 11.5192 

34 o-Fluoroanisole 321-28-8 
 

919.7 903.77 0.566 15.4606 

35 o-Chlorofluorobenzene 348-51-6 
 

862.0 851.08 0.603 13.5645 

36 p-Chlorofluorobenzene 352-33-0 840.5 851.08 0.603 13.5645 

37 o-Chlorotoluene 95-49-8 
 

986.3 981.17 0.680 16.7526 

38 m-Bromofluorobenzene 1073-06-9 932.8 955.86 0.706 15.7688 
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Descriptors calculation: 
 

We have used the Hyperchem[16] to represent each molecule, whose geometry is initially pre-
optimized by molecular mechanics calculation. Then for each molecule we have determined its (x,y,z) atomic 
coordinates corresponding to the conformation of  lowest energy determined by the PM3 method. All 
calculations were carried in the frame of the Hartree Fock formalism with spin constraint (or RHF: for 
Restricted Hartree-Fock) without confirmation interaction. 

 
 The molecular structures were optimized; according to the Polack-Ribiere algorithm adopting a 
stopping criterion corresponding to a mean square root of the gradient of 0.001 kcal/mol. Following this 
optimization, the molecule geometries were transferred to Dragon software[8] for the calculation of 1664 
descriptors belongingto20 different classes. The descriptors of the same group exhibiting constant 
values(standard deviation lower than 0.0001)provide no information and thus, are removed from subsequent 

analysis. Similarly, two highly correlated descriptors 0,92r  conveying redundant information automatically 

exclude one that is correlated with the greatest number of descriptors. Consequently, the initial pool of 1664 
descriptors was reduced to 203 elements. 
 
Kennard and Stone algorithm [15]: 
 

It is a sequential technique that maximizes the Euclidean distances between new selected samples 
and previous analyzed samples. It starts by locating the two most distant samples, which are removed from 
the original data set and assigned to the training set. 
 

For each sample (sample i) not selected previously, the algorithm calculates its distance to each 
sample; and assigns to (sample i) the smallest distances.   
 
 The sample (sample i) associated with the greatest distance is the furthest of all the samples 
already selected. The procedure is repeated until the target number of training samples is reached. 

This technique has two significant advantages. Selecting the most distant samples from each other 
introduces diversity across the training set. Obtaining a uniform distribution is another advantage of this 
technique. 

 
As a result, using the algorithm of Kennard and Stone, the complete data set was divided into two 

subsets: the training subset containing 28 compounds and validation subset including the 10 remaining 
compounds. 

 
Model validation development:  
 

The variable subsets selection (VSS) is realized using the genetic algorithm (GA-VSS) by maximizing the 

prediction coefficient
2
LOOQ

. 
 
Genetic algorithms are optimization algorithms based on technique derived from genetic and natural 

evolution mechanisms: i.e, crossing (or crossover) and mutation that are responsible for the generation of new 
individuals. 

 
In the MobyDigs software [17] such processes are controlled by a user-defined parameter T varying 

between zero and one, defining the relative extent of crossing and mutation. 
 
In the terminology of genetic algorithms, the binary vector I, called chromosome, is a vector of 

dimension p where each position (a gene) corresponds to a variable (1: if it appears in the model; zero 0: 
otherwise. Each chromosome is a model with a subset of variables [4,5]. 
 
The genetic algorithm parameters have been defined as follow: 
 

- Model population: Pop = 100 
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- Maximum number of variables in the model: L = 5, so as to associate a minimum of five compounds to 
each descriptor; the minimum number is arbitrarily 1 

- T value: chosen equal to 0.5 to balance the effects of crossover and mutation. 
 

To avoid models with co-linearity lacking high prediction capacibilities, we have applied the QUIK (Q 
Under Influence of K) rule [18] based on multivariable correlation index [19] defined as follow: 
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j :are the eigenvalues of the correlation matrix of the data set  n p  .

 
n : The number of objects and p  the number of variables. 

This rule derives from the assumption that the total correlation in the set formed by predictors X of the model, 

and the response Y ( xyK ) must always be greater than the correlation measured with the set of predictors 

( xxK ) taken separately. 

To calculated xyK  we have considered the response Y as an x variable and determined the 

corresponding correlation matrix. Generally [20], models that do not verify the relationship are rejected: 
 

   0,05 2xy xxD K K K                                                                                

A model with a minimum number of explanatory variables is sought (rule of parsimony). Its variables 
can be related to the retention phenomena in the apolar stationary phase Apiezon MH used in the analyses 
and could be easly interpreted. 

The model will be justified by means of different statistical parameters (
2R , 

2

ajR , Fisher parameter 

F, standard error S) and by considering the Leave Many Out (LMO) cross- validation, the randomization test of 
Y, as well as the bootstrap technique. 
 

The adjusted 
2R 2( )ajR calculated using the formula: 

 

 2 21
1 1                                                                                          (3)

1
aj

n
R R

n p

 
   

    
 

Is a better measure of the percentage of the total variation explained by the model than the coefficient of 

determination 
2R  

 
The Fisher parameter F is defined by the ratio of the average of the squares due to regression to the 

mean of the squares of the residuals, which to compare the variance explained by the model to the residual 

variance: a high value of 
2R is proof of the reliability of this model. 

 
The cross validation consists in re-computing the model considering only (n-q) objects and using this 

new model to predict the dependent variable value of the q excluded compounds. The process is repeated for 
the n objects of the training set. 
 

If 1q  the technique is called LOO (Leave One Out), otherwise it is LMO (Leave Many Out). A 

prediction coefficient LOO or LMO designated by 2Q or
2

CVR respectively, is calculated considering the 

dispersion of the estimation [21]: 
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/
ˆ

i iy : corresponds to the response of the ith object using a model obtained without involving this object; iy , 

y  : represent respectively, the value of the ith observation and the average value of the n observations; the 

summation covers all of the compounds in training. 
 

In order to establish a nonrandom model, we have applied the randomization test of  Y(Y-scrambling) 
[21]. The test consists in generating a vector of the studied propriety by a random permutation of the 
components of the real vector. Then, we calculate the result QSRR model vector according to the usual 
method. This process is repeated 100 times in this study. If a high score is reached, the original model is not 
acceptable. 

 
In the Bootstrop validation technique, we simulate new samples of size (n), by random pooling with 

reduction. As such, the training set that maintains its initial size (n), is composed of generally, repeated 
objects, since the set of evaluation includes the removed objects [22,23]. 
 

The model is calculated both on the training set and on the predicted responses set combined. This 
construction procedure of the training and evaluation sets is repeated 3000 times in this study, and an average 

prediction capacity is calculated 
2

BOOTQ [23]. 

The validation of the model has been completed using a test set. Equation (5) details the calculation 

of 
2

EXTQ  for the test set. 
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iy , ˆ
iy : are respectively the observed and the predicted values, and caly  is the average of  the observed 

values of the training set. The sum considers all the samples of the test set. 
 

According to  Golbraikh et al, [9,24] a QSRR model can provide an acceptable prediction if it verifies 
the following conditions: 

 

 2 0,5                              6EXTQ a 
  ; 

 2 0,6                         6 br  
 

     2 2 2 2 /2 2

0 0/ 0,1                     or              /r <0,1                       6   r r cr r r   

  0,85 1,15                         or                0,85 1,15                           6k dk   
 

r is the  correlation coefficient between the calculated and experimental values in the test set ;  
2

0r (Calculated versus observed values) and
2

0r  (observed versus calculated values) are the coefficients of 

determination; k , k  are slopes of the regression lines through the origin of calculated versus  observed and 
observed versus respectively.  
 

Applicability domain: 
 

The applicability domain (AD) is a theoretical region of space defined by the descriptors of the model 
and the modeled response, for which a given QSRR model is expected to lead to reliable predictions. This 
region, which depends on the nature of the compounds of the training set, can be characterized in different 
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ways. In this work the structure of AD has been determined by the leverages approach, defined by the 
diagonal elements of the H matrix that allows, by simple multiplication to associate the vector y to the 

vector ŷ .The diagonal iih  element is defined by: 

 

   
1

                                                                                                 7T T

ii i i
h x X X x




 

 

i
x is the line-vector of the compound descriptors i, and X the matrix of the model deduced from the 

descriptors values of all the training set; the exponent T denoting the transposition vector (or matrix). 
 

The iih  element determines the influence of observation i on estimators obtained by the least 

squares method. A leverage point is an observation that significantly influences the estimators. In practice, an 
observation i is considered as a point of leverage if: 
 

 3 3 1                                                                                  (8)ii ii

i

h h* h n p n
 

    
 


 

 
The Williams plot displaying the standardized residual of predictions against the leverage values 

iih was used with the aim of detecting both X outliers (leverage points) and Y outliers in (standard residuals 

higher in absolute values than 3 standard deviation units: 3s ). 

 
RESULTS AND DISCUSSION 

 
Model development and validation: 
 

Table 2 shows that the retention index is linearly correlated to the descriptor 1X sol , or better to its 

square 1 2X sol  
 

Table 2: Comparison of the statistical parameters of different models. 
 

na Descriptors 2R  
2

ajR  
2

LOOQ  
2

5L( )OQ  
2

BOOTQ  F  S  DK  

28 1X sol  98.00 97.7 97.64 97.86 97.64 1247.37 23.16 - 

28 1 2X sol  98.19 98.12 97.95 98.14 97.76 1409.32 21.82 - 

28 0X Av . 1 2X sol  99.59 99.56 99.47 99.52 99.4 3068.88 10.53 0.123 

32b 
3NOCH . 0XV .VOL . 

DIMO  
99.63 99.57 99.46 99.47 99.36 1814.17 10.12 0.126 

a Training set compounds, b Jalali-Heravi et al. model. 
 

We have adopted the model with 2 descriptors, 0 ,  X1 2X AV sol
.
The corresponding equation, 

calculated using the centered reduced values is given by: 
 

 0.168 0 0.872 1 2                                                                           9IR X Av X sol 
 

Where 0X Av  denotes the valence connectivity index of zero order, and 1X sol the Solvation 

connectivity index of the first order [25-26].  
 

The combination of these two descriptors provides an improvement of all statistical parameters as 
detailed and compared in the table 2. In particular, the standard error is divided by a factor greater than two 
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(21.82 to 10.58) and close to the value (10.12) obtained with the four descriptor model, published by Jalali-
Heravi et al. Also note DK (= 0.123) is higher than the prescribed limit of 0.05.  

 
The obtained statistical parameters provide substantial ground that the proposed model (equation 9) 

establishes a strong correlation between the 2 selected variables and the studied property, characterized by an 
excellent coefficient of determination R2 =99.59%that explains about 99.60% of  data variation. In addition, the 
very high value of the Fisher parameter         F (= 3068.88), indicates the excellent capability of the model in the 

prediction of RI values, with an acceptable standard error (s = 10.53). Equation (9) presents a 2

ajR = 99.56 

indicating excellent agreement between correlation and variation of the data. 
 

The minor difference between 2

LOOQ  and 2

(5)L OQ informs about the robustness of the model. The 

cross-validation prediction coefficient provides indication of the reliability of the model when addressing the 

sensitivity against the elimination of any chosen five data. The value of 2 ( 99.4)BootQ   confirms both the 

internal predictability and stability of the proposed model. Figure 1 plots the graph of statistical 

coefficients
2Q and 

2R  which allows comparing the results for randomized models (circles) to the initial model 

(rhombus). It appears clearly that retention indices statistics obtained for the modified vectors are lower than 
those of the real QSRR model. This observation ensures that a real structure/retention relationship has been 
established. 

 

 
 

Figure 1: Graphical representation of the randomization test.
 

 
The following statistical parameters obtained for the external tests set verify the well-accepted 

conditions (6-a to 6-d), which reinforces the predictive capabilities of the present model. 
 

2 0.9869 0.5EXTQ  
2 0.9765 0.6r  

 

   2 2 2

0 0.9765 1.000 0.9765 0.0240 0.1r r r     
 

   2 '2 2

0or  0.9765 1.000 0.9765 0.0240 0.1r r r     
 

'0.85 1.0002 1.15     or   0.85 0.9996 1.15k k     
 

 
Application domain: 
 

Figure 2 compares Williams plots derived either from our2-descriptors model, and the 4- descriptors 
model [2].In both cases, the leverage values of all training and test compounds, are lower than the 

corresponding critical values *h  (respectively 0.321 and 0.468) and, in both cases, none of the compounds is 
found influential. 
 



     ISSN: 0975-8585 

May – June  2017  RJPBCS  8(3)          Page No. 829 

Furthermore, for 2-descriptors model (figure 2-A) all training and test compounds exhibit standard 
residuals values lower, in absolute value to 3 units of standard deviation (3s), which confirms that the 
relevance of data set and the removal of insignificant data. 
However, two outlier data points are found with the 4-descriptors model (figure 2-B), one of the training set 
(compound 30: o-xylene) and the other from the test set   (compound 38: m-Bromofluorobenzene). 
 

 
 

Figure 2: Williams plot for the 2-descriptors model (A) and the 4-descriptors model (B). 

 
Interpretation of the model: 
 

The descriptor X1sol2 which is highly correlated with RI significantly governs the model response as 
shown by the values of the coefficients of the 2- descriptors model, and the associated Student t values equal 
to 48.33 for X1sol2  and 9.31 for X0Av respectively. 
 
 Solvation connectivity indices are defined [27] for a H-depleted molecular graph, where fluorine 
atoms as well as hydrogen's are not taken into account, their dimension being very close to that of the 
hydrogen atom. 
 
The Solvation connectivity index of the first order is derived from the equation: 
 

 

 
0,5

1

.1
1                                                                                            (10)

4

B
i j b

b
i j b

L L
X sol

 

 
 

 

Where b runs to the number of bonds B , iL  and jL  are the principal quantum numbers of 2 

vertices (atoms) incidents to the considered bond; i and j represent the degrees (valences) of the 

corresponding vertices. The solvation connectivity indices make it possible to model solvation entropy and 
describe the interactions of dispersion in solution which play a decisive role in the retention phenomenon. 
 

The average valence connectivity index of order zero ( 0X Av ) is obtained by dividing the valence 

connectivity index of order zero ( 0X V ) by the number of edges B (bonds) of the H-depleted molecular graph. 

0X V is defined [28,29] by: 
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N is the number of graph vertices, the number of atoms in the molecule other than hydrogen. 
v

i is calculated for the atom i, from  the expression: 
 

                                                                                                          12
1

V
V i i
i V

i i

Z H

Z Z





   

, Z  respresent, respectively, the atomic number and the number valence electron of atom i.i iZ 

 

Whereas Hi designates the number of hydrogen atoms bounded to the considered atom. 

 
Besides the fact that it introduces relative corrections to the differences between  halogen  types 

contained in a given molecule, the descriptor 0X Av  is related to the size and degree of ramification of the 

molecules that may have a significant role in the distribution process of the solute between the two 
chromatographic phases ( mobile/stationary)  
 

CONCLUSION 
 

A bi-parametric model was developed for the retention of 38 benzene derivatives separated by gas 
chromatography on apolar Apiezon MH column. 

 
Solvation connectivity index describes the interactions of dispersion in solution. Whose role is crucial 

in the phenomenon of retention, while the average valence connectivity index of order zero plays a significant 
role in the distribution process of the solute between the two chromatographic phases (mobile/stationary). 
 

The selection of these explanatory variables was carried out by genetic algorithm based software 
MobyDigs among 203 descriptors calculated using the Dragon software. 
 

This optimal model was validated by different statistical approaches using the training set and the 
external validation set, defined rationally by adopting the Kennard and Stone technique. 
 

The obtained statistical parameters show that the model with two descriptors established a strong 
correlation between the two selected variables and the studied property, which indicates the excellence of the 
model in the prediction of retention indices of benzene derivatives.  
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